Molecular mobility of scaffolds' biopolymers influences cell growth.

نویسندگان

  • Rok Podlipec
  • Selestina Gorgieva
  • Darija Jurašin
  • Iztok Urbančič
  • Vanja Kokol
  • Janez Strancar
چکیده

Understanding biocompatibility of materials and scaffolds is one of the main challenges in the field of tissue engineering and regeneration. The complex nature of cell-biomaterial interaction requires extensive preclinical functionality testing by studying specific cell responses to different biomaterial properties, from morphology and mechanics to surface characteristics at the molecular level. Despite constant improvements, a more general picture of biocompatibility is still lacking and tailormade scaffolds are not yet available. The scope of our study was thus the investigation of the correlation of fibroblast cell growth on different gelatin scaffolds with their morphological, mechanical as well as surface molecular properties. The latter were thoroughly investigated via polymer molecular mobility studied by site-directed spin labeling and electron paramagnetic resonance spectroscopy (EPR) for the first time. Anisotropy of the rotational motion of the gelatin side chain mobility was identified as the most correlated quantity with cell growth in the first days after adhesion, while weaker correlations were found with scaffold viscoelasticity and no correlations with scaffold morphology. Namely, the scaffolds with highly mobile or unrestricted polymers identified with the cell growth being five times less efficient (N(cells) = 60 ± 25 mm(-2)) as compared to cell growth on the scaffolds with considerable part of polymers with the restricted rotational motion (N(cells) = 290 ± 25 mm(-2)). This suggests that molecular mobility of scaffold components could play an important role in cell response to medical devices, reflecting a new aspect of the biocompatibility concept.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity in biomaterials for tissue engineering.

The molecular and physical information coded within the extracellular milieu is informing the development of a new generation of biomaterials for tissue engineering. Several powerful extracellular influences have already found their way into cell-instructive scaffolds, while others remain largely unexplored. Yet for commercial success tissue engineering products must be not only efficacious but...

متن کامل

Biological Effects of Spirulina (Arthrospira) Biopolymers and Biomass in the Development of Nanostructured Scaffolds

Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatt...

متن کامل

Influence of poly(n-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability.

This study investigates the effect on: (1) the bulk surface and (2) the three-dimensional non-woven microfabric scaffolds of poly(N-isopropylacrylamide)-CNT-polyaniline on growth and viability of cells. The poly(N-isopropylacrylamide)-CNT-polyaniline was prepared using coupling chemistry and electrospinning was then used for the fabrication of responsive, non-woven microfabric scaffolds. The el...

متن کامل

Perspectives of Chitin and Chitosan Nanoibrous Scaffolds in Tissue Engineering

Chitin and its deacetylated derivative, chitosan, are non-toxic, biodegradable biopolymers currently being developed for use in biomedical applications such as tissue engineering scaffolds, wound dressings, separation membranes, antibacterial coatings, stent coatings, and sensors. Recently, nano fibrous scaffolds based on chitin or chitosan have potential applications in tissue engineering. Tis...

متن کامل

Preparation of decellularized three dimentional scaffolds as the model for tissue engineering and their functional assessments in vitro application of blastema tissue

Tissue engineering is based on three main factors including scaffolds, cells and growth factors. Natural scaffolds derived from decellularized tissues and organs have been successfully used in tissue engineering. Decellularization studies have shown that natural scaffolds which maintaine their main structure and properties could be a suitable tool for studying cellular behaviors and preparation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 18  شماره 

صفحات  -

تاریخ انتشار 2014